在数学哲学和逻辑中,直觉主义(英语:Intuitionism),或者新直觉主义(Neointuitionism )(对应于前直觉主义(Preintuitionism)),是用人类的构造性思维活动进行数学研究的方法。也可翻译成直观主义。
任何数学对象被视为思维构造的产物,所以一个对象的存在性等价于它的构造的可能性。这和古典的方法不同,因为根据古典方法,一个实体的存在可以通过否定它的不存在来证明。对直觉主义者来说,这是不正确的:不存在的否定不表示可能找到存在的构造证明。正因为如此,直觉主义是数学结构主义的一种;但它不是唯一的一类。
直觉主义把数学命题的正确性和它可以被证明等同起来;如果数学对象纯粹是精神上的构造,还有什么其它法则可以用作真实性的检验呢(如同直觉主义者所说的一样)?这意味着直觉主义者对一个数学命题的含义,可能与古典的数学家有不同理解。例如,说 A或B,对于一个直觉主义者,是宣称 A 或是 B 可以被“证明”,而非两者之...