词条 电离

电离

电离英语:Ionization),或称电离作用离子化,是指在(物理性的)能量作用下,原子、分子在水溶液中或熔融状态下产生自由离子的过程。

电离大致可细分为两种类型:一种连续电离(sequential ionization)和非连续电离(Non-sequential ionization)。在经典物理学中,只有连续电离可以发生。非连续电离则违返了若干物理定律,属于量子电离。

例如:

  • 在水溶液中,由于水分子的作用,HCl全部解离成H+和Cl,因此被定义为强酸
  • 在水溶液中,由于水分子的作用,CH3COOH部分离解成H+和CH3COO,因此被定义为弱酸
  • 在光照或高能射线辐射下,气态原子、分子失去电子变成离子
电离相关文献
电离
经典电离只适用于经典物理和玻尔模型,使原子和分子电离完全确定性,即每一个问题,始终有一个明确的和可计算的答案。参阅电离常数电离度电离能
查看全文
电离层
地球物理地球大气层最下面的一层是对流层,它从地面延伸到约10公里的高处。10公里以上为平流层,再向上为中间层。在约80公里以上的增温层大气已经非常稀薄,在这里阳光中的紫外线和X射线可以使得空气分子电离,自由的电子在与正电荷的离子合并前可以短暂地自由活动,这样在这个高度造成一个等离子体。在这里自由电子的数量足以影响电波的传播。在电离层中阳光电离大气分子与离子重新捕获自由电子的过程平衡。一般来说高度越高,大气越稀薄,则电离过程越占上风。不过电离层的特性还随许多其它因素影响。电离过程的主力是太阳活动。电离层内电离度主要由获得的太阳辐射所影响。因此电离层随周日和季节(冬季半球远离太阳,因此受到的辐射比较少)而变化。太阳活动主要随太阳黑子周期而变化。一般来说太阳表面黑子越多,太阳活动越强烈。除此以外随地球表面纬度的不同当地受到的太阳辐射强度也不同。耀斑和太阳风中的带电粒子可以与地球磁场相互作用,导致...
查看全文
电离能
半导体对于半导体来说,电离能即为将电子从价带顶移到真空能级所需的最小能量I=χs+Eg其中I为电离能,χs为电子亲合能,Eg为价带顶到导带底的能量差。参见电离电离度电离常数电离能表电正度
查看全文
再电离
背景描绘出的宇宙时间线,刻画出再电离在宇宙历史上的位置。在宇宙中氢的第一次相变是复合,发生在红移z=1100(大爆炸之后的400,000年),由于在这个点上宇宙的冷却使得电子和质子结合形成中性氢原子的比率高过氢被电离的比率。因为光子的散射,在再结合之前的宇宙是不透明的,但在更多的电子被捕获形成氢之后,宇宙变得越来越透明。同时,中性氢(或其它的原子或分子)的电子能够吸收某些波长的光子成为激发态,充满中性氢原子的宇宙相对来说对这些波长是不透明的,而对其他大部分的频谱是透明的。黑暗时期就从这个点开始,因为除了逐渐变暗的微波背景辐射,没有其他的光源。第二次的相变发生在早期宇宙充满足以使中性氢游离的能量,开始形成天体的时期。当这些天体形成和辐射能量,在大爆炸之后的一亿五千万年至十亿年(在红移6<z10的时刻几乎已经全部中性化了。宇宙微波背景辐射的非各向同性和极化宇宙微波背景辐射在不同角度上的各向异性...
查看全文
电离氢区
观测在鹰星云内黑暗的恒星形成区。少数最明亮的HII区可以用裸眼直接看见。然而,在望远镜于17世纪发明之前似乎从未被注意到。即使伽利略在观测到其中的星团时也没有注意到猎户座大星云(在以前约翰·拜耳的目录中记载为单独的恒星:猎户座θ)。猎户座星云被认为是法国的观测者Nicolas-ClaudeFabridePeiresc在1610年发现的,此后,早期的观测在我们的银河系和其他星系内发现了许多的HII区。威廉·赫歇尔在1774年观测猎户座星云,将其描述为"未成形的火热薄雾,未来能成为太阳的浑沌材料"。当威廉·哈金斯(他的妻子玛莉·哈金斯是他的助手)将它的光谱仪对准不同的星云观测之后,认为这个假说必须要等待数百年才能确认。有些星云,像是仙女座大星云,有着与恒星相似的光谱,而推导出星系可能是数亿颗单独恒星的集合体。其它看来非常的不一样,不是强烈的连续谱线与被叠加的吸收线,就是像猎户座星云和一些相似的...
查看全文
电离相关标签
离子
电化学