度量张量
例子欧几里德几何度量二维欧几里德度量张量:弧线长度转为熟悉微积分方程:在其他坐标系统的欧氏度量:极坐标系:(x1,x2)=(r,θθ-->){displaystyle(x^{1},x^{2})
张量
历史背景“张量”一词最初由威廉·罗恩·哈密顿在1846年引入,但他把这个词用于指代现在称为模的对象。该词的现代意义是沃尔德马尔·福格特在1899年开始使用的。这个概念由格雷戈里奥·里奇-库尔巴斯托罗在1890年在《绝对微分几何》的标题下发展出来,随着1900年列维-奇维塔的经典文章《绝对微分》(意大利文,随后出版了其他译本)的出版而为许多数学家所知。随着1915年左右爱因斯坦的广义相对论的引入,张量微积分获得了更广泛的承认。广义相对论完全由张量语言表述,爱因斯坦从列维-奇维塔本人那里学了很多张量语言(其实是MarcelGrossman,他是爱因斯坦在苏黎世联邦理工学院的同学,一个几何学家,也是爱因斯坦在张量语言方面的良师益友-参看AbrahamPais所著《上帝是微妙的(SubtleistheLord)》),并学得很艰苦。但张量也用于其它领域,例如连续力学,譬如应变张量(参看线性弹性)。注...
挠率张量
挠率张量设M是切丛上带有联络∇的流形。挠率张量(有时也称为嘉当(挠率)张量)是一个矢量值2-形式,定义在矢量场X于Y上这里[X,Y]是两个矢量场的李括号。由莱布尼兹法则,对任何光滑函数f有T(fX,Y)=T(X,fY)=fT(X,Y)。所以T是一个张量,尽管是用非张量的共变导数定义的:它给出了切矢量上的一个2形式,但共变导数只对矢量场有定义。曲率和比安基恒等式联络∇的曲率张量是一个映射TM∧TM→End(TM),定义在矢量场X,Y,与Z上注意,对位于一点的矢量,这个定义与这个矢量如何扩张成一个矢量场的方式无关(即定义了一个张量,类似于挠率)。比安基恒等式联系了曲率和挠率。将X,Y与Z的循环求和记为S{\displaystyle{\mathfrak{S}}},例如那么下面的公式成立1.比安基第一恒等式:2.比安基第二恒等式:挠率张量的分量挠率张量在切丛的局部截面的基(e1,...,en)下可...
张量积
两个张量的张量积有两个(或更多)张量积的分量的一般公式。例如,如果U和V是秩分别为n和m的两个协变张量,则它们的张量积的分量给出为所以两个张量的张量积的分量是每个张量的分量的普通积。注意在张量积中,因子U消耗第一个rank(U)指标,而因子V消耗下一个rank(V)指标,所以例子设U是类型(1,1)的张量,带有分量Uβ;并设V是类型(1,0)的张量,带有分量V。则而张量积继承它的因子的所有指标。两个矩阵的克罗内克积对于矩阵这个运算通常叫做克罗内克积,用来明确结果有特定块结构在其上,其中第一个矩阵的每个元素被替代为这个元素与第二个矩阵的积。对于矩阵U{\displaystyleU}和V{\displaystyleV}:多重线性映射的张量积给定多重线性映射f(x1,……-->,xk){\displaystylef(x_{1},\dots,x_{k})}和g(x1,……-->,xm){\disp...
张方
(?—306)西晋河间(今河北献县东南)人。世贫贱,至长安,以勇力见用于河间王司马颙。太安二年(303),颙命为前锋讨齐王同,再讨长沙王又,攻入洛阳,杀又,大掠西还。次年,又劫惠帝归长安,官至中领军、录尚书事,领京兆太守。东海王越起兵,攻长安,颙惧而求和,恐他不从,遂杀之。