词条 几何拓扑学

几何拓扑学

几何拓扑学是数学中研究流形以及它们的嵌入的分支,俱代表性的主题有纽结理论和辫子群。纽结理论和辫子群是几何拓扑学研究范围的典型例子。随着时间的变迁几何拓扑学几乎等同于考虑二维、三维、或者四维的低维拓扑学

1945年后拓扑学发展迅速,逐渐地数学家将这个学科分为三个分支:

  • 代数拓扑学(伦移等问题)
  • 几何拓扑学(此分支中的庞加莱猜想已被佩雷尔曼于2003年成功证明)
  • 微分拓扑学研究可微分结构等等

这些分支的基础是研究一般的拓扑空间的点集拓扑学。但是随着时间的发展这些区分又越来越显得是人为的区分了。

1960年代初开始的许多研究成果导致几何拓扑学本身变化了。1961年史提芬·斯梅尔解决了高维中的庞加莱猜想,这使得三维和四维显得尤其困难。事实上这些困难的解决需要新的技术,而与此同时高维提供的自由度使得换球术的问题也成为可计算的问题了。威廉·瑟斯顿在1970年代末提出的几何化猜想提供了在低维中几何与拓扑之间的关系...

几何拓扑学相关文献
几何原本
章节大纲欧几里得所著的《几何原本》共分13卷。第一卷至第六卷的内容主要为平面几何。第一卷:几何基础。本卷确立了基本定义、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理。第二卷:几何与代数。该卷主要讨论的是毕达哥拉斯学派的几何代数学,主要包括大量代数定理的几何证明。第三卷:圆与角。本卷阐述了圆、弦、割线、切线、圆心角、圆周角的一些定理。第四卷:圆与正多边形。本卷讨论了已知圆的某些内接和外切正多边形的尺规作图问题。第五卷:比例。本卷对欧多克索斯的比例理论进行阐述,第六卷:相似。本卷阐述了比例的属性,以及相似形的概念,包括了泰勒斯定理。第七卷至第九卷主要阐述了数论。第七卷:数论(一)。本卷内容包括整除性、质数、最大公约数、最小公倍数等初等数论内容。第八卷:数论(二)。本卷继续讨论初等数论,包括欧几里得辗转相除法、各种数的关系(如质数、合数、平方数、立方数等)。第九卷:数论(三)。本...
查看全文
拓扑学
历史柯尼斯堡七桥问题被认为是拓扑学里最初的定理,由莱昂哈德·欧拉所解出。拓扑学开始于对几何上特定问题的研究。李昂哈德·欧拉于1736年有关柯尼斯堡七桥问题的论文被认为是现代拓扑学的第一份学术著作。“拓扑学”一词于1847年由利斯廷在《VorstudienzurTopologie》一书中提出。拓扑学的英文于1883年在自然杂志上对利斯廷的讣文中第一次出现,用来区分“…定性的几何学,于主要被以定量关系对待的一般几何学中”。不过,上述用词都与现代对拓扑学的定义不完全相同。现代拓扑学主要依靠集合论的概念。集合论由格奥尔格·康托尔于19世纪后半所发展。除了建立起集合论的基本概念外,康托尔亦将欧氏空间里的点集合作为他对傅里叶级数之研究的一部分。儒勒·昂利·庞加莱于1895年发表论文《相位分析》(AnalysisSitus),引进同伦与同调的概念,这些概念现在被认为是代数拓扑的一部分。统合格奥尔格·康托...
查看全文
辛几何
名词由来symplectic这个名词,是赫尔曼·外尔所提出来的。他原来把symplecticgroup(辛群)称为complexgroup,以带出linecomplex的含意。不过complex会令人联想起complexnumber(复数),因此他将complex改为对应的希腊文symplectic一词。complex源自拉丁文complexus一词,词根是co-(共同)+plexus(编织),意为“织在一起”,相对应希腊文词根是sym-plektikos(συμπλεκτικός),结合成symplectic一词。参看辛流形哈密顿力学黎曼几何切触几何参考DusaMcDuffandD.Salamon,IntroductiontoSymplecticTopology,OxfordUniversityPress,1998.ISBN0-19-850451-9.A.T.Fomenko,Symple...
查看全文
几何拓扑学
外部链接RobKirby"sProblemsinLow-DimensionalTopology-gzippedpostscriptfile(1.4MB)MarkBrittenham&quot
查看全文
点集拓扑学
定义拓扑是一个包含一个集合X连同和X的子集族Σ(称为开集系)的二元组(X,Σ),它满足如下三个公理:开集的并集是开集。有限个开集的交集是开集。X和空集∅是开集.研究范围具体地说,在点集拓扑学的定义和定理的证明中使用了一些基本术语,诸如:开集和闭集开核和闭包邻域和邻近性紧致性和连续性连续函数数列的极限,网,以及滤子分离公理可数性公理虽然还有其它一些更加复杂的术语,但这些术语通常都直接与这些基本术语相关,并且这些更加复杂的术语不在其他数学分支中广泛采用。其它的一些拓扑学主要分支有代数拓扑学、几何拓扑学、微分拓扑学。从这些名称中也可以看出,点集拓扑为这些领域提供了共通的基础。参见点集拓扑学术语列表参考文献Bourbaki;TopologieGénérale(GeneralTopology);ISBN0-387-19374-XJohnKelley;GeneralTopology;ISBN0-387...
查看全文
几何拓扑学相关标签
几何拓扑学
拓扑学