词条 拓扑不变量

拓扑不变量

在拓朴学之中,并不拘泥于一个拓朴空间所包含的体积、面积、长度等等量,而是在乎这个拓朴空间所拥有的内禀性质,如亏格(亏数)云云。 而所谓的内禀性质是指那些不能用度量方式去求得的各种量,也就是说,这些量是不能使用因次分析来表达出的。

而拓朴学的也因为这种不在乎那些跟大小、位置、形状的性质而被称做一门“定性”的科学。

而拓朴不变量的定义是:两个同构的拓朴空间之间相同的内秉性质。

举个例子,一个拓朴空间的连通性,假如一个拓朴空间不能被描述成两个非空不相交开集的联集,我们就叫这个拓朴空间为连通空间,而我们现在将这个连通空间随意伸缩、平移或甚至变形,这个拓朴空间是连通空间的性质是不会变的,我们就称拓朴空间的连通性是一个拓朴不变量。

白话地说,以简易凡,假设我们现在有一颗球,但我们不能限制这颗球中的任何一点不能画一条连续的线到同在这颗球中的任何另外一点,那么,我们称做这个球有连通性。 而现在,我...

拓扑不变量相关文献
不变量
参阅正则变换洛伦兹协变性
查看全文
代数拓扑
代数拓扑的主要分支代数拓扑的几个主要分支如下:同伦群在数学中,同伦群是一个用于分类拓扑空间。基本群是同伦群最简单的例子,记录了空间中环结的信息。直观上来说,同伦群记录了拓扑空间中的基本形状,即“孔洞”的信息。同调在代数拓扑和抽象代数中,同调(homology,名称部分来源于希腊语ὁμόςhomos="同")是一类将一个阿贝尔群或模的序列联系到一个给定数学对象(如拓扑空间、群等)的过程上同调在同调论中,上同调是对一个在上链复形(co-chain)上定义一个阿贝尔群的序列的过程的统称。换言之,上同调是对“上链”、余圈(cocycle)和上边缘(coboundary)的抽象研究。上同调可以看作是一种对拓扑空间赋予代数不变量的方法,但其代数结构比同调更为精炼。上同调源于同调的构造过程的代数对偶。通俗意义上讲,上链的基本意义是为同调的链赋予某种“量”。流形流形是局部上近似于欧几里得空间的拓扑空间。更...
查看全文
拓扑群
形式定义拓扑群G是拓扑空间和群使得群运算和是连续函数。这里的G×G被看作使用乘积拓扑得到拓扑空间。尽管我们这里没有做其他要求,很多作者要求在G上的拓扑是豪斯多夫空间。下面会讨论其理由和一些
查看全文
拓扑斯
格罗滕迪克拓扑斯(几何中的拓子)自1940年代层的引入,数学中一个重要的主题便成了用空间上的层研究空间。亚历山大·格罗滕迪克以引入拓子的概念,详细说明了这个想法。在数学中,常常有这样的情况:拓扑直觉很有效,但是并没有拓扑空间,这时拓扑斯便显出它的功效;有时可以找到一个拓扑斯,使得直觉形式化。这个程式化的想法最伟大的成就是概形的平展拓扑斯的引入。等价构造令C为一范畴。Giraud的一个定理断言,以下命题等价:有小范畴D和包含关系C↪↪-->{\displaystyle\hookrightarrow}Presh(D)使得其存在保持有限极限的左伴随。C是格罗滕迪克site上的层范畴。C满足以下的Giraud公理有如上之性质的范畴称为“(格罗滕迪克)拓扑斯”。这里Presh(D)表示从D到几何范畴的反变函子范畴;如此的反变函子常被称为预层。Giraud公理范畴C的Giraud公理是:C的生成元构成...
查看全文
总线拓扑
运作该总线是资料链接于一个总线网络,该总线只会发送数据于单一方向性,以及如果有网段被切断,所有的网络传输将停止运作。主机在总线网络中被称为站点或工作站,在总线网络中,每一台接收所有的网络流量,并通过各站所产生的流量具有相等之传输优先级。每个网络段,因此,一个冲突域中。为了使节点在同一电缆同时传输,他们使用的介质访问的控制技术,如载波侦听多路访问(CSMA)或总线主控器。优缺点优点方便连接于电脑或外设线性总线。比星状拓扑较少的电缆长度。非常适合用于小型网络。缺点如果有一在主缆上中断时,整个网络也将跟着中断。终端机必须于主干电缆的两端。如果整个网络发生中断时,将会很难找出问题。并不意味着被用作一个大型建筑之独立解决方案。当更多的设备被添加到网络时,传输速度会变得更缓慢。参见网络拓朴星状拓扑环状拓扑混合式拓扑(英文:HybridTopology)
查看全文
拓扑不变量相关标签
拓扑学