电传导
经典概念

德鲁德模型中的电子(蓝色)不断在较重的、静止的晶体离子中间(红色)撞来撞去。
设想外电场 E {\displaystyle \mathbf {E} \,\!} 作用于某物体。在这物体内,电荷量为 q {\displaystyle q\,\!} 的自由电子,感受到电场力 F = q E {\displaystyle \mathbf {F} =q\mathbf {E} \,\!} ,会呈现加速运动。
没有任何障碍阻止这运动,自由电子的速度会变的越来越大。然而,每经过一段时间 t {\displaystyle t\,\!} ,自由电子会碰撞到其它原子的阻碍,使其速度回归为热速度 ( thermal velocity ) 。这样,自由电子的运动会呈现不断的加速与碰撞。每一次碰撞,累积的动量 P {\displaystyle \mathbf {P} \,\!} 平均为
其中,角括弧代表平均程序。
所以,电流密度 J {\displaystyle \mathbf {J} \,\!} 为
其中, n {\displaystyle n\,\!} 是电子密度, v {\displaystyle \mathbf {v} \,\!} 是自由电子的平均速度, m {\displaystyle m\,\!} 是电子质量。
这经典模型是由保罗·德鲁德于 1900 年提出,称为德鲁德模型。从这模型得到了一个重要结果:电流密度与电场成正比,比例是物质的电导率 σ σ --> {\displaystyle \sigma \,\!} 。
电解质
在电解液里的电流是载有电荷的离子流。例如,施加电场于Na 和Cl 的溶液。那么,钠离子会不断地移向负极;而氯离子会往正极移动。在正常状况下,氧化还原反应会发生于电极表面,将氯离子的电子释放出来,经过导线传输到另外一端,让电子被钠离子吸收。
水-冰混和物和某些称为质子导体 ( proton conductor ) 的固态电解质,含有可移动的正价氢离子。对于这些物质,电流是由移动的质子形成的。
在某些电解质混合物里,一群鲜艳着色的离子形成了移动的电荷。这些离子的缓慢移动所形成的电流,可以用人眼直接地观察到。
气体和等离子体
对于空气和一些普通气体,假设施加的外低于击穿电场阈值,电传导的主要电荷载子是由放射性气体、紫外光和宇宙射线造成的相当少数量的可移动离子。由于电导率非常低,气体是电介质或绝缘质。但是,一当施加的外电场超过击穿值时,由于电场力的作用,自由电子呈加速运动,动能变得相当大,足够以碰撞机制来制造更多的自由电子,或用雪崩击穿的机制将中性气态原子或中子电离。这程序形成了等离子体,含有很多的可移动的电子和正离子,使等离子体的物理行为变得就像一个导体。这程序的传导路径上,会有光波发射出来,像电光 ( spark ) 、电弧、闪电等等。
等离子态是一种物质态。当气体的分子或原子的一些电子被电离时,称此状态的物质为等离子体。非常高的温度,或强大的电场或磁场的作用,会产生等离子体。由于电子的质量很小,当施加电场时,等离子体的电子会比很重的正离子更快加速。大部分的电流是由电子形组成的。
真空
由于在理想真空 ( perfect vacuum ) 内,没有任何带电粒子,这种真空就好像理想绝缘体(应该算是目前所知最棒的绝缘体了)但是,通过场致电子发射 ( field electron emission ) 或热离子发射( thermionic emission ) 的机制,金属的电极表面会发射自由电子或离子于真空,因而使得真空内的一部分区域变得具有传导性。当热能超过金属的功函数时,就会产生热离子发射,金属会发射出热离子。当金属表面的电场有足够的强度来引发量子隧穿效应时,就会出现场致电子发射,促使金属原子射出电子于真空。
参阅
电导
电导率
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

相关资料
展开
- 有价值
- 一般般
- 没价值








24小时热门
推荐阅读


关于我们

APP下载


{{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}