族谱网 头条 人物百科

X射线晶体学

2017-10-16
出处:族谱网
作者:阿族小谱
浏览:942
转发:0
评论:0
研究方法概述(以高分子材料的X射线晶体学为主)由于所有的原子都含有电子,并且X射线的波长范围为0.001-10纳米,其波长与成键原子之间的距离(约数十纳米)相当,因此X射线可用于研究各类分子的结构。但是,到目前为止还不能用X射线对单个的分子成像,因为没有X射线透镜可以聚焦X射线,而且X射线对单个分子的衍射能力非常弱,无法被探测。而晶体(一般为单晶)中含有数量巨大的方位相同的分子,X射线对这些分子的衍射叠加在一起就能够产生足以被探测的信号。从这个意义上说,晶体就是一个X射线的信号放大器。X射线晶体学将X射线与晶体学联系在一起,从而可以对各类晶体结构进行研究,特别是蛋白质晶体结构。获得晶体显微镜下的蛋白质晶体。用于X射线晶体学研究的晶体通常边长小于一个毫米。通过X射线衍射分析结构必须首先获得样品的单晶。晶体生长的方法有很多,如气相扩散法、液相扩散法、温度渐变法、真空升华法、对流法等等,而目前应

研究方法

概述(以高分子材料的X射线晶体学为主)

由于所有的原子都含有电子,并且X射线的波长范围为0.001-10纳米,其波长与成键原子之间的距离(约数十纳米)相当,因此X射线可用于研究各类分子的结构。但是,到目前为止还不能用X射线对单个的分子成像,因为没有X射线透镜可以聚焦X射线,而且X射线对单个分子的衍射能力非常弱,无法被探测。而晶体(一般为单晶)中含有数量巨大的方位相同的分子,X射线对这些分子的衍射叠加在一起就能够产生足以被探测的信号。从这个意义上说,晶体就是一个X射线的信号放大器。X射线晶体学将X射线与晶体系在一起,从而可以对各类晶体结构进行研究,特别是蛋白质晶体结构。

获得晶体

X射线晶体学

显微镜下的蛋白质晶体。用于X射线晶体学研究的晶体通常边长小于一个毫米。

通过X射线衍射分析结构必须首先获得样品的单晶。晶体生长的方法有很多,如气相扩散法、液相扩散法、温度渐变法、真空升华法、对流法等等,而目前应用最广泛的一种晶体生长方法是气相扩散法。气相扩散法又可以分为悬滴法、坐滴法、三明治法、油滴法和微量透析法。其中,悬滴法的使用频率最高。(以上方法都属于化学方法,通常,研究凝聚态物理的用得最多的是区熔法,以多晶材料为基础通过局部施加高温使其部分熔化后再结晶,从而逐渐得到大块的晶体,高分子材料通常不能承受过高温度,所以无法使用这种方法) 结晶时,生成晶体的溶液须先进入成核状态形成晶核,然后进入稳定态使晶体成长,才能获得足够大小的单晶。而合适的晶体生长条件往往极难预测,所以在获得初步的晶体生长条件后,需要对晶体生长条件进行优化,包括调整沉淀剂浓度(如聚乙二醇、盐类等)、pH值、样品浓度、温度、离子强度等。

衍射数据收集

在获得单晶之后,就需要进行衍射实验,即用X射线打到晶体上,产生衍射,并记录衍射数据。 由于结晶条件的苛刻和晶体本身的脆弱,操纵晶体时要小心防止将其破坏。有多种方法可用于固定晶体并控制其在衍射实验中的旋转。过去的一种方法是将晶体与母液一同吸入一根毛细玻璃管。如今常用的方法是将晶体置于玻璃或尼龙纤维上,并用液氮冷却X射线带来的能量。

X射线的来源主要有两种,一种是在常用X射线仪上使用的,通过高能电子流轰击铜靶(或钼靶),产生多个特征波长的X射线,其中使用的CuKα的波长为1.5418Å;另一种就是利用同步辐射所产生的X射线,其波长可以变化。同步辐射X射线可以分为角散同步辐射(ADXD)和能散同步辐射(EDXRD)两种,角散同步辐射的实验原理与通常的X射线衍射仪是一样的,不过波长更低(如0.6199Å),能量更高;而能散使用白光入射,即入射光具有连续波长,收集的衍射信号是在固定角度进行的,它的分辩率较角散同步辐射低,技术要求也较低。现在中国的北京同步辐射装置(BSRF)已经升级成了角散的。 衍射数据(包括衍射点的位置和强度)的记录多采用像板或CCD探测器。

数据分析

对记录到的衍射数据进行分析,可以获得晶体所属的晶系和对应的布拉维晶格以及每个衍射点在倒晶格上的密勒指数和对应的强度。

晶体结构解析

由于晶体衍射图样实际上是晶体中所有原子的电子对X射线衍射的叠加,而现实中并不存在可以聚焦X射线的透镜,通过对衍射结果(用结构因子来表示)进行反傅立叶变换,才可以获得晶体中电子密度的分布。而结构因子是与波动方程相关的,计算结构因子需要获得波动方程中的三个参数,即振幅、频率和相位。振幅可以通过每个衍射点的强度直接计算获得,频率也是已知的,但相位无法从衍射数据中直接获得,因此就产生了晶体结构解析中的“相位问题(phase problem)”。

有几种解决相位问题的方法,其中分子置换法、同晶置换法和反常散射法常用于解析生物大分子结构。: 直接法:直接计算相位,常用于较小的分子(含有少于1000个氢原子以外的原子)。

Patterson法:

反常散射法:

同晶置换法:将一个高电子密度的金属原子导入到分子中。结合导入前后和金属原子本身的衍射结果解决相位问题。常用的有硒、铼等。

分子置换法:若分子的部分结构与已知结构的分子相似,可以结合已知分子的结构解决相位问题。

建立和改进分子模型

历史

早期结晶和X-射线

虽然人们自很久以来就很喜欢漂亮的晶体,但科学化的研究是等到17世纪才开始的。约翰内斯·开普勒于1611年发现雪花的对称六角结构是由水分子规则性的排列组成。

尼古拉斯·斯坦诺于1669年研究晶体的对称性,他指出在同一个晶体上面与面的角度总是一样的。于1784年发现,晶体的结构都能被描述成把相同大小形状的物体重复有规则的排列。William Hallowes Miller(英语:William_Hallowes_Miller)与1839年给晶体的每一面各标上整数,密勒指数到现在还被用于确定晶体方向。

勒内·茹斯特·阿羽依的研究告诉我们晶体的正确概念,晶体是由晶体结构在三个方向上重复排列。

威廉·伦琴于1895年发现X射线。物理学家当时不清楚那是什么,怀疑他是电磁波(它的确是)。经许多实验的许多现象说明X射线是电磁波,但X射线同时有粒子的特性(它的确应该有,因为电磁波的载体是光子——一种粒子)。威廉·亨利·布拉格因为这点于1907年认为X射线不是电磁波。马克斯·冯·劳厄于1912年证实X射线确实是电磁波。

延伸阅读

国际晶体学表

(英文)International Tables for Crystallography. Volume A, Space-group Symmetry 5th edition, ed. Theo Hahn. Dordrecht: Kluwer Academic Publishers, for the International Union of Crystallography. 2002. ISBN 0-7923-6590-9. 

研究文集

(英文)Macromolecular Crystallography, Part A (Methods in Enzymology, v. 276) edited by CW Carter, Jr. and RM Sweet. San Diego: Academic Press. 1997. ISBN 0-12-182177-3. 

教科书

(英文)Blow, D. Outline of Crystallography for Biologists. Oxford: Oxford University Press. 2002. ISBN 0-19-851051-9. 

计算数据分析

(英文)Young, R.A. (编). The Rietveld Method. Oxford: Oxford University Press & International Union of Crystallography. 1993. ISBN 0-19-855577-6. 

历史

(英文)Friedrich, W. Die Geschichte der Auffindung der Röntgenstrahlinterferenzen. Die Naturwissenschaften. 1922, 10: 363–366. doi:10.1007/BF01565289. 

参见

布拉格定律

布拉维格子

晶体学点群

电子衍射

中子衍射

粉末衍射

X射线小角散射(SAXS)

X射线广角散射(WAXS)


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

更多文章

更多精彩文章
评论 {{commentTotal}} 文明上网理性发言,请遵守《新闻评论服务协议》
游客
发表评论
  • {{item.userName}} 举报

    {{item.content}}

    {{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}

    回复评论
加载更多评论
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信

推荐阅读

· X射线
历史早期X射线重要的研究者有IvanPului教授、威廉·克鲁克斯爵士、约翰·威廉·希托夫、欧根·戈尔德斯坦、海因里希·鲁道夫·赫兹、菲利普·莱纳德、亥姆霍兹、尼古拉·特斯拉、爱迪生、查尔斯·巴克拉、马克思·冯·劳厄和威廉·伦琴。一台水冷X射线管的图纸(简化/过时)1869年物理学家约翰·威廉·希托夫观察到真空管中的阴极发出的射线。当这些射线遇到玻璃管壁会产生荧光。1876年这种射线被欧根·戈尔德斯坦命名为“阴极射线”。随后,英国物理学家克鲁克斯研究稀有气体里的能量释放,并且制造了克鲁克斯管。这是一种玻璃真空管,内有可以产生高电压的电极。他还发现,当将未的相片底片靠近这种管时,一些部分被感光了,但是他没有继续研究这一现象。1887年4月,尼古拉·特斯拉开始使用自己设计的高电压真空管与克鲁克斯管研究X射线。他发明了单电极X射线管,在其中电子穿过物质,发生了现在叫做轫致辐射的效应,生成高能X射...
· X射线管
结构X射线管都包含阴极和阳极组件,其皆位于真空的材料密封罩内亦即为真空管。阴极组件其是由钨丝绕成线圈的形式装在一个浅的聚焦杯(focusingcup)中,当钨丝通过足够的电流时,使其产生白热现象时电子会从钨的表面逸出形成电子云。阳极组件主要为钨靶,通常是由钨或钨铼合金所制成,其作用在于使阴极来的高速电子停止运动。X射线管分类1.根据密封材质不同,可分为玻璃管、陶瓷管和金属陶瓷管。2.根据用途不同,可分为医疗X射线管和工业X射线管。3.根据密封方式不同,可分为开放式X射线管:在使用过程中需要不断抽真空。密闭式X射线管:生产X射线管时抽真空到一定程度后立即密封,使用过程中无需再次抽真空。产生方式X线是由高速运行的电子群撞击物质突然被阻时产生的。因此,它的产生,必须具备以下3个条件:自由活动的电子群。电子群以高速运行。电子群在高速运行时突然受阻。制动辐射(Bremsstrahlung)高速电子突...
· X射线机
历史1895年,X射线在德国物理学家威廉·伦琴发现后不久,便投入了应用。他发现X光几个月后,拉塞尔·雷诺兹就制成了这个X光机。这是世界上最古老的X光机之一,它使人类得以在没切口的情况下,观看人体内部。工作原理及分类X射线机可以分为工业用X射线机和医用X射线机。工业用X射线机可以按照产生射线的强度分硬射线机和软射线机。用于理化检测的衍射分析仪等属于软射线,而用于面积、厚度较大的材料的检测的是硬射线。硬射线的产生一般是利用高压电:如100kV或300kV的电压加到X射线管字上,产生的射线可以穿透5-50mm的钢板。而用电子加速器可以产生穿透100mm以上的钢板的射线。使用高压电发生X射线的机器可分为便携式(移动式)和固定式。相关条目X射线威廉·伦琴
· X射线双星
X射线双星的发现1960年代,人们利用火箭和气球确定了大约30个X射线源。1964年萨佩特和泽尔多维奇等人提出银河系X射线源是双星系统中的中子星或者黑洞的吸积过程产生的。最早证认的X射线双星是半人马座X-3和武仙座X-1。20世纪70年代,乌呼鲁卫星观测到了它们具有X射线脉冲,周期分别为4.84秒和1.24秒,并且经历数天的周期性变化。X射线脉冲星发现后,提出了密近双星的模型解释这种现象,脉冲的周期性变化是由于双星相互掩食而产生的。这种说法已经得到广泛承认。截至2006年,人们已经在银河系内发现了超过300个X射线双星。钱德拉X射线天文台还在河外星系中发现了X射线双星。X射线双星的分类根据伴星的质量,X射线双星大体上可以分为高质量X射线双星和低质量X射线双星两类。低质量X射线双星低质量X射线双星的主星是一颗致密星(中子星或黑洞),伴星的质量较低,通常小于1倍太阳质量,轨道周期从数分钟到数百...
· X射线天文学
X射线天文学的起源1949年9月,美国海军研究实验室(NRL)的研究人员在新墨西哥州的白沙导弹靶场,使用德国V-2火箭搭载的盖革计数器,首次观测到了太阳日冕发出的X射线,证实了太阳是一个X射线源,1956年,人们又利用气球上发射的固体火箭观测到了太阳耀斑发出的X射线。由于月亮反射太阳的光,人们推测月亮也会发出微弱的X射线荧光。1962年6月18日,美籍意大利裔天文学家里卡尔多·贾科尼等人利用Aerobee探空火箭升至150公里的高空,在X射线波段开始了全天范围内的扫描。火箭上带有三个盖革计数器,利用X射线穿透的窗口厚度不同,可以记录下光子的能量,同时利用火箭自身的旋转确定X射线源的方向。这次试验原本是想观测月亮的X射线辐射,但是这个目的没有实现,却在火箭滞空的6分钟里,在距离月亮大约25度的地方,意外地发现了一个很强的X射线源,因为位于天蝎座,命名为天蝎座X-1。后来证实为来自银河系中心的...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信