族谱网 头条 人物百科

轨道离心率

2017-10-16
出处:族谱网
作者:阿族小谱
浏览:565
转发:0
评论:0
计算轨道离心率能够从轨道状态向量计算得知离心率向量的大小:此处:e{displaystylemathbf{e},!}是离心率向量。对椭圆轨道也能从距离的近拱点和远拱点计算得知:此处:dp{d

计算

轨道离心率能够从轨道状态向量计算得知离心率向量的大小:

此处:

e {\displaystyle \mathbf {e} \,\!} 是离心率向量。

对椭圆轨道也能从距离的近拱点和远拱点计算得知:

此处:

d p {\displaystyle d_{p}\,\!} 是近拱点的距离。

d a {\displaystyle d_{a}\,\!} 是远拱点的距离。

举例

例如,地球现在的轨道离心率是0.0167,而由于行星间的重力吸引,经过一段时间会慢慢变成接近0,而最大值约为0.05。(图请参考[1])。

在其他的数值上,水星的离心率(0.2056)是在太阳系内行星中最大的。在2006年行星重定义,矮行星的冥王星有更大的离心率大约0.248,月球有值得注意的离心率0.0554。其他行星的离心率,可以参考 太阳系的行星表 。

对气候的影响

季节的长度对应于地球在轨道上经过分点与至点间所扫掠过的面积。

轨道力学要求季节长度需要与对应季节的象限被扫掠过的面积成比率,所以在轨道离心率的极值,在远心点上的时间(日期)会比在近心点上要长。今天,在北半球,在秋季与冬季位于近日点附近,地球以最快的速度运动着,因此冬季和秋季比春季和夏季为短。在2006年,北半球的夏天比冬天长4.66天,春天比秋天长2.9天。(source)轴向进动缓缓的改变地球的分点与至点在轨道上的位置,参考回归年有更详细的说明与数值。在未来的10,000年,北半球的冬季会逐渐变长,而夏季会变得短些,最后,创造出来的环境将顺理成章的引发下一次的冰河期。

相关条目

离心向量


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

更多文章

更多精彩文章
评论 {{commentTotal}} 文明上网理性发言,请遵守《新闻评论服务协议》
游客
发表评论
  • {{item.userName}} 举报

    {{item.content}}

    {{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}

    回复评论
加载更多评论
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信

推荐阅读

· 心率
参看脉搏心电图心脏衰竭
· 离心率
与焦距和轴长的关系有固定焦点F和准线D的椭圆(e=1/2)、抛物线(e=1)和双曲线(e=2)圆锥曲线之离心率与轴长有下述关系:其中c=半焦距a=半长轴(椭圆)或半实轴(双曲线)或采用较融贯的表法:其中对椭圆取k=1{\displaystylek=1},对抛物线取k=0{\displaystylek=0},对双曲线取k=−−-->1{\displaystylek=-1}。圆锥曲线依离心率之分类如下圆:e=0{\displaystylee=0}椭圆:0<e<1{\displaystyle0抛物线:e=1{\displaystylee=1}双曲线:1<e{\displaystyle1相关资料标准椭圆方程:此时半长轴=a,半短轴=b,焦距=2c,而且标准双曲线方程:此时半实轴=a,半虚轴=b,焦距=2c,而且
· 轨道
历史历史上,人们用本轮来描述行星的视运动,认为行星的运动是很多圆周运动合成的结果,这是一种几何方法,并没有涉及引力的概念。在开普勒证明行星的运动轨迹是椭圆之前,用这种方法来预测行星的轨迹勉强可行。最开始,人们使用以地球为中心的太阳系天球模型来解释行星的视运动。该模型假设存在一个完美的球体或圆环,所有的恒星和行星都在其表面运动。在更精确的测量了行星的运动后,人们引入了均轮和本轮这样的理论来描述行星运动。这种系统能更精确的预测行星的位置,但随着测量结果越来越精确,需要加入更多的本轮到模型中,因此,这种模型变得越来越繁琐。17世纪初,在约翰内斯·开普勒对大量精密观察的天体轨道数据进行分析后,得出著名的3个行星运动定律。第一,他发现太阳系中行星轨道不是以往人们想象的正圆形,而是椭圆的;太阳也不是位于轨道中心,而是在一个焦点上。第二,行星的轨道速度,也不是恒定不变的,事实上行星的轨道速度与当下行星至...
· π轨道
结构苯的π轨道呈环状,但中心仍有电子分布π轨道是一种由轨道并肩重叠后所形成的分子轨道,除了s轨道无法形成π轨道,之外,大部分的轨道都可以形成π轨道,较常是由两个pz轨道所形成,但实际上只要方向对了,无论是px或py都能形成π轨道。π轨道可以有很多形状,但都不与核轴成旋转对称,其形状取决于他所形成的π键,例如:有共振时,π轨道就会变得较大较狭长,若是环状的共振,则其π轨道呈环形。其能容纳的电子数量也由其所形成的π键来决定,如乙烯内所形成的π轨道可容纳下2个电子,而苯的π轨道呈环状,可容下6个电子,这是因为共振使电子均匀分布而导致。此外,在形成化学建的过程中,未杂化的轨愈有可能形成π轨道,如乙烯,碳上形成了sp杂化轨道,而未杂化的p轨道则形成π轨道。轨道能级丁二烯中,不同能级的π轨道及其形状。根据休克尔方法,可得出不同能量的π轨道,不同能级的π轨道形状不尽相同,电子会先从能量低的π轨道开始填入...
· d轨道
命名d轨道的“d”是“diffused”,其为“漫系光谱”之意。结构五种d轨道的形状,除了dz之外,其他四个形状相同,只是方向不同5d轨道模型,红色和蓝色中间空隙则为波节d轨道从主量子数n=3开始出现,最小的d轨道是3d轨道,也就是说1d、2d轨道不存在,当角量子数为2时,其轨道为d轨道,主量子数不可小于三,对应于五个磁量子数2、1、0、-1、-2,在3d轨道中,有五个能量相同的3d轨道,同样的,主量子数为4以上时也有五个4d轨道,因此,每个壳层都有五个d轨道,它们分别为dz、dx-y、dxy、dyz、dxz,但是没有dx、dy、dy-z、dx-z。在存在的五个d轨道(dz、dx-y、dxy、dyz、dxz)中,有四个形状相同,分别为:dx-y、dxy、dyz、dxz但方向不同,而dz是五个d轨道中形状与众不同的一个,尽管如此,dz轨道仍具有和dx-y、dxy、dyz及dxz相同之能量。4...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信