更多文章
更多精彩文章
曲线的情况
任何曲线都双有理等价于一条平滑射影曲线。平滑射影曲线之间的有理映射能延拓为态射,双有理等价对应到同构;因此曲线的双有理几何无非是射影曲线的同构及其不变量问题。
高维情况
在零特征域上,意大利学派在 1890-1910 年间建立代数曲面的基础理论,并完成了曲面的双有理分类。1970 年起的工作聚焦于三维以上情形。这方面的指导思想之一是极小模型纲领。
参见
双有理不变量
拉开
代数曲线
代数曲面
文献
S. Iitaka, Algebraic geometry, an introduction to birational geometry of algebraic varieties , Springer (1982)
R. Hartshorne, Algebraic geometry , Springer (1977)
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
{{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}