更多文章
更多精彩文章
初步阐述
自然对数虚部之解析延拓
若f为一解析函数,定义于复平面C中之一开子集U,而V是C中一更大且包含U之开子集。F为定义于V之解析函数,并使
则F称为f之解析延拓。换过来说,将F函数限制在U则得到原先的f函数。
解析延拓具有唯一性:
若V为两解析函数F1及F2的连通定义域,并使V包含U;若在U中所有的z使得
则在V中所有点
此乃因 F1 − F2亦为一解析函数,其值于f的开放连通定义域U上为0,必导致整个定义域上的值皆为0。此为全纯函数之惟一性定理的直接结果。
相关条目
解析函数
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
{{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}