磁饱和
说明
磁饱和的特性可以在其磁化曲线(也叫BH曲线或磁滞曲线)中看出,即该曲线向右弯曲的部分(见右图)。当磁场强度 H 增加时,磁感应强度 B 逐渐趋于一个最大值。在磁饱和之后,磁感应强度 B 仍在逐渐增加,但比达到饱和度前的增长速率小了3个数量级(英语:Orders_of_magnitude_(magnetic_field))。
磁场强度 H 和磁感应强度 B 的关系可以用磁导率:μ μ -->=B/H{\displaystyle \mu =B/H}或相对磁导率μ μ -->r=μ μ -->/μ μ -->0{\displaystyle \mu _{r}=\mu /\mu _{0}}表达,当中的 μ μ -->0{\displaystyle \mu _{0}}是真空磁导率。磁性金属的磁导率不是一个恒定不变的量,而是取决于磁场强度 H 。在会磁饱和的金属中,相对磁导率随磁场强度 H 的增加达到一个最大值,然后随着它的饱和发生转变再减小,最后会变为1。
不同的材料有着不同的饱和度。例如,被用于变压器中的高导磁性铁合金,在磁感应强度为1.6-2.2特斯拉(T)饱和,然而铁氧体在0.2-0.5T饱和。某些非晶态金属合金在1.2-1.3T达到饱和,μ合金在0.8T达到饱和 。

因为磁饱和,铁磁性材料的磁导率μf会随磁场强度增加,上升到一最大值,之后渐渐下降。
解释
铁磁性材料(像铁)在微观上由一个个磁畴构成,它们的作用就像微小的永磁体,可以改变它们磁化的方向。在外部的磁场施加在材料之前,这些磁畴的磁场随机排列互相抵消,所以整体上的磁场小到足以忽略。当一个外部的磁场强度H施加在材料后,它进入材料然后重新排列磁畴,造成那些小磁场转变方向然后与外磁场平行,相加后形成从材料中发出的大磁场。这就称为磁化。施加的磁场强度H越大,磁畴转变方向而形成的磁感应强度B越大。当外部磁场强度大于某定值后,磁场强度再加大所产生的磁感应强度变化已可忽略,此时磁化强度接近定值,此时即为磁饱和。磁饱和不代表全部磁畴都对正外部磁场的方向。饱和时的磁畴结构会随温度而不不同。
影响和用途
磁饱和限制了铁氧体磁芯的磁铁和变压器能达到的最大磁场(约为2特斯拉),也限制了它们的最小磁芯,这也是为什么高功率电动机、发电机、及电力用变压器的体积那么大的一个重要原因,因为它们必须有一个大磁芯。
在变压器与电感器这类利用铁芯及磁场运作的元件中,当足够大的电流通过时,它们磁芯的磁场也会达到饱和,此时它们的运转为非线性的,也就是说通过改变电流,可以使这些磁芯的电感与其他性质随之改变。在线性电路(英语:Linear cirt)中这是不希望出现的现象。当施加交流电信号的时候,这种非线性会造成一次谐波和互调失真(英语:Intermodulation)。为了避免这种现象,必须限制施加在铁芯电感上的信号强度,使铁芯不会磁饱和。为了减小这种影响,在一些变压器磁芯中会有一些气隙。在饱和电流是通过线圈后会使磁芯饱和的电流,这会列在电感器与变压器厂商提供的规格书中。
不过有些电子设备也会应用磁饱和的特性。例如在弧焊中用饱和变压器芯限制电流。在铁磁共振变压器(英语:ferroresonant transformers)中,磁饱和的作用相当于稳压器。当原电流超过某一特定值时,芯进入一种饱和状态,限制次级电流的进一步递增。在更复杂的应用中,饱和铁芯感应器(英语:Saturable reactor)和磁放大器(英语:Magnetic amplifier)使用一个直流电通过一个独立离的线圈来控制电感器的阻抗。在控制绕组中,变化的电流使操作点在饱和曲线中上下移动,控制通过电感器的交流电。在萤光灯、镇流器中和功率控制系统中会用到这类的特性。
在磁通门罗盘(英语:fluxgate compass)及磁通门磁强计中也有用到磁饱和的特性。
参见条目
磁
磁场
磁场强度
磁阻
波门杜尔铁钴合金
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

- 有价值
- 一般般
- 没价值








24小时热门
推荐阅读

关于我们

APP下载


{{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}