族谱网 头条 人物百科

非欧拉商数

2017-10-16
出处:族谱网
作者:阿族小谱
浏览:589
转发:0
评论:0
相关条目非互补欧拉商数参考资料L.Havelock,AFewObservationsonTotientandCototientValencefromPlanetMath

相关条目

非互补欧拉商数

参考资料

L. Havelock,A Few Observations on Totient and Cototient ValencefromPlanetMath


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

更多文章

更多精彩文章
评论 {{commentTotal}} 文明上网理性发言,请遵守《新闻评论服务协议》
游客
发表评论
  • {{item.userName}} 举报

    {{item.content}}

    {{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}

    回复评论
加载更多评论
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信

推荐阅读

· 情绪商数
历史最早情商的起源可以追溯到达尔文的研究。他认为情感宣泄对动物的生存与对环境的适应起着重要作用。在二十世纪,尽管对智商的传统定义重点强调认知的方面,比如识记知识、解决问题等,但是不少有影响力的研究者在智商的研究中发现了非认知领域的重要性。早在1920年,爱德华·桑代克用社会智能(socialintelligence)来描述理解与管理他人的能力。大卫·韦克斯勒相似地描述了非智力因素对行为的影响,并进一步提出如果不能充分阐释这些非智力因素,那么对智商的研究将难有进展。在1983年,哈沃德·加德纳的多元智能理论(TheTheoryofMultipleIntelligences)引入了多元智能的概念。多元智能包括了人际智能(洞察他人的目的与动机的能力)和自我认知智能(认识并理解自我的能力)。加德纳认为,传统的智能(比如智商),不能全面地描述一个人的能力。尽管研究者们提出的概念有所不同,但他们都有一...
· 欧拉公式
形式对于任意实数x{\displaystylex\,},以下恒真:由此也可以推导出sin⁡⁡-->x=eix−−-->e−−-->ix2i{\displaystyle\sinx={\frac{e^{ix}-e^{-ix}}{2i}}}及cos⁡⁡-->x=eix+e−−-->ix2{\displaystyle\cosx={\frac{e^{ix}+e^{-ix}}{2}}}。当x=ππ-->{\displa欧拉tylex=\pi\,}时,欧拉公式的特殊形式为eiππ-->+1=0{\displaystyle欧拉恒等式\pi}+1=0\,}。(参见欧拉恒等式)cis函数在复分析领域,欧拉公式亦可以以函数的形式表示并且一般定义域为θθ-->∈∈-->R{\displaystyle\theta\in\mathbb{R}\,},值域为θθ--&...
· 欧拉乘积
定义假设a{\displaystylea}为一积性函数,则狄利克雷级数等于欧拉乘积其中,乘积对所有素数p{\displaystylep}进行,P(p,s){\displaystyleP(p,s)}则可表示为这可以看作形式母函数,形式欧拉乘积展开的存在性与a(n){\displaystylea(n)}为积性函数两者互为充要条件。a(n){\displaystylea(n)}为完全积性函数时可得到一重要的特例。此时P(p,s){\displaystyleP(p,s)}为等比级数,有当a(n)=1{\displaystylea(n)=1}时即为黎曼ζ函数,更一般的情形则是狄利克雷特征。参考文献G.Polya,InductionandAnalogyinMathematicsVolume1PrincetonUniversityPress(1954)L.C.Card53-6388(Averyacces...
· 欧拉方程
历史第一份印有欧拉方程的出版物是欧拉的论文《流体运动的一般原理》(Principesgénérauxdumouvementdesfluides),发表于1757年,刊载于《柏林科学院论文集》(Mémoiresdel"AcademiedesSciencesdeBerlin)。它们是最早被写下来的一批偏微分方程。在欧拉发表他的研究之时,方程组只有动量方程及连续性方程,因此只能完整描述非压缩性流体;在描述可压缩性流体时,会因条件不足而不能提供唯一解。在1816年,皮埃尔-西蒙·拉普拉斯添加了一条方程,第三条方程后来被称为绝热条件。在十九世纪的后半期,科学家们发现,与能量守恒相关的方程在任何时间都得被遵守,而绝热条件则只会在有平滑解的情况下会被遵守,因为该条件是由平滑解时的基础定律所造成的后果。在发现了狭义相对论之后,能量密度、质量...
· 妮欧塔·乌乎拉
星际舰队军旅生涯乌乎拉在2266年加入星舰进取号,成为航员组的一员。一开始是以上尉的军衔担任柯克舰长手下的总通讯官。在进取号的五年任务里,她一直坚守这个岗位。在2271年星舰重新整修之后,她以少校的军衔重新回到进取号,在威拉德·戴克(WillardDecker)手下工作。之后在同一年发生的维杰(V"ger)危机时又再度回到柯克(当时是上将)手下工作。在2284年的时候,进取号被指派做为军校生训练之用,乌乎拉也调到星舰总部通讯部,并且也在星舰学院授课。在试图营救史波克的行动中,她扮演一个帮助很大的角色。她从老城太空站的传送室将柯克及他的航员非法传送到进取号,让他们得以窃取它以进行这个未经许可的任务。在进取号自爆之后,乌乎拉和其他的航员共同劫持一架克林贡猎禽舰以进行一项拯救地球的任务。他们必须回到20世纪寻找一种未来已经绝迹的鲸鱼(参见《抢救未来》)。她和切科夫成功地从美国航空母舰勇往号的核子...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信