族谱网 头条 人物百科

全概率公式

2017-10-16
出处:族谱网
作者:阿族小谱
浏览:551
转发:0
评论:0
条件概率的期望值在离散情况下,上述公式等于下面这个公式。但后者在连续情况下仍然成立:此处N是任意随机变量。这个公式还可以表达为:参见全期望公式全方差公式lawoftotalcumulance

条件概率的期望值

在离散情况下,上述公式等于下面这个公式。但后者在连续情况下仍然成立:

此处N是任意随机变量。

这个公式还可以表达为:

参见

全期望公式

全方差公式

law of total cumulance


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

更多文章

更多精彩文章
评论 {{commentTotal}} 文明上网理性发言,请遵守《新闻评论服务协议》
游客
发表评论
  • {{item.userName}} 举报

    {{item.content}}

    {{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}

    回复评论
加载更多评论
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信

推荐阅读

· 概率
历史第一个系统地推算概率的人是16世纪的卡尔达诺。记载在他的著作LiberdeLudoAleae中。书中关于概率的内容是由Gould从拉丁文翻译出来的。Cardano的数学著作中有很多给赌徒的建议。这些建议都写成短文。例如:《谁,在什么时候,应该赌博?》、《为什么亚里士多德谴责赌博?》、《那些教别人赌博的人是否也擅长赌博呢?》等。然而,首次提出系统研究概率的是在帕斯卡和费马来往的一系列信件中。这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由ChevalierdeMéré提出的问题。ChevalierdeMéré是一知名作家,路易十四宫廷的显要,也是一名狂热的赌徒。问题主要是两个:掷骰问题和比赛奖金应分配问题。概念在日常生活中,我们常常会遇到一些涉及可能性或发生机会等概念的事件(event)。一个事件的可能性或一个事件的发生机会是与数学有关的。例如:“从一班40名学生中随意选出一人,这...
· 公式
外部链接The11MostBeautifulMathematicalEquations
· 公式
定义项的递归定义一个变量或一个常量符号或f(t1,...,tn){\displaystylef(t_{1},...,t_{n})\,},这里的f{\displaystylef\,}是一个n-元函数符号,而t1,...,tn{\displaystylet_{1},...,t_{n}\,}是项。公式的递归定义t1=t2{\displaystylet_{1}=t_{2}\,},这里的t1{\displaystylet_{1}\,}和t2{\displaystylet_{2}\,}是项或R(t1,...,tn){\displaystyleR(t_{1},...,t_{n})\,},这里的R{\displaystyleR\,}是一个n-元关系符号,而t1,...,tn{\displaystylet_{1},...,t_{n}\,}是项或(¬¬-->φφ-->){\disp...
· 概率幅
参阅概率流薛定谔方程量子态玻恩定则
· 概率公理
柯尔莫果洛夫公理假设我们有一个基础集ΩΩ-->{\displaystyle\Omega},其子集的集合F{\displaystyle{\mathfrak{F}}}为σ代数,和一个给F{\displaystyle{\mathfrak{F}}}的元素指定一个实数的函数P{\displaystyleP}。F{\displaystyle{\mathfrak{F}}}的元素是ΩΩ-->{\displaystyle\Omega}的事件,称为“事件”。第一公理即,任一事件的概率都可以用0{\displaystyle0}到1{\displaystyle1}区间上的一个实数来表示。第二公理即,整体样本集合中的某个基本事件发生的概率为1。更加明确地说,在样本集合之外已经不存在基本事件了。这在一些错误的概率计算中经常被小看;如果你不能准确地定义整个样本集合,那么任意子集的概率也不可能被定义。第三公理...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信