族谱网 头条 人物百科

墨子号量子科学实验卫星

2017-10-16
出处:族谱网
作者:阿族小谱
浏览:843
转发:0
评论:0
简介墨子号量子科学实验卫星(简称墨子号),于2016年8月16日1时40分,在酒泉用长征二号丁运载火箭成功发射升空。此次发射任务的圆满成功,标志着我国空间科学研究又迈出重要一步。中国量子卫星首席科学家潘建伟院士介绍,如果说地面量子通信构建了一张连接每个城市、每个信息传输点的“网”,那么量子科学实验卫星就像一杆将这张网射向太空的“标枪”。当这张纵横寰宇的量子通信“天地网”织就,海量信息将在其中来去如影,并且“无条件”安全。2017年1月18日,中国发射的世界首颗量子科学实验卫星“墨子号”圆满完成了4个月的在轨测试任务,正式交付用户单位使用。中国科学技术大学、中科院等单位相关领导在交付使用证书上签字。2019年1月31日,被授予2018年度克利夫兰奖。中国研究人员2019年2月14日在美国华盛顿说,“墨子号”量子科学实验卫星预计将超出预期寿命、继续工作至少2年以上,并展开更多国际合作。我国发射...

简介

墨子号量子科学实验卫星(简称墨子号),于2016年8月16日1时40分,在酒泉用长征二号丁运载火箭成功发射升空。此次发射任务的圆满成功,标志着我国空间科学研究又迈出重要一步。

中国量子卫星首席科学家潘建伟院士介绍,如果说地面量子通信构建了一张连接每个城市、每个信息传输点的“网”,那么量子科学实验卫星就像一杆将这张网射向太空的“标枪”。当这张纵横寰宇的量子通信“天地网”织就,海量信息将在其中来去如影,并且“无条件”安全。2017年1月18日,中国发射的世界首颗量子科学实验卫星“墨子号”圆满完成了4个月的在轨测试任务,正式交付用户单位使用。中国科学技术大学、中科院等单位相关领导在交付使用证书上签字。

2019年1月31日,被授予2018年度克利夫兰奖。中国研究人员2019年2月14日在美国华盛顿说,“墨子号”量子科学实验卫星预计将超出预期寿命、继续工作至少2年以上,并展开更多国际合作。

墨子号量子科学实验卫星

我国发射的世界首颗量子科学实验卫星“墨子号”

研发背景

量子保密通信技术已经从实验室演示走向产业化。在城市里,通过光纤建构的城域量子网络通信已经开始尝试实际应用,我国在城域光纤量子通信方面已取得了国际领先的地位。 在量子通信的国际赛跑中,中国属于后来者。经过多年的努力,中国已经跻身于国际一流的量子信息研究行列,在城域量子通信技术方面也走在了世界前列,建设完成合肥、济南等规模化量子通信城域网,“京沪干线”大尺度光纤量子通信骨干网也即将竣工。

然而,这只是开始。“在城市范围内,通过光纤构建城域量子通信网络是最佳方案。但要实现远距离甚至全球量子通信,仅依靠光纤量子通信技术是远远不够的。”潘建伟说。

量子保密通信,能够从三个方面保障信息安全。第一,发送者和接收者之间的信息交互是安全的,不会被窃听或盗取。第二,“主仆”身份能够自动确认,只有主人才能够使唤“仆人”,而其他人无法指挥“仆人”。第三,一旦发送者和接收者之间的传递口令被恶意篡改,使用者会立刻知晓,从而重新发送和接收指令。 原来,用量子通信方式传递信息,传送的是光的最小能量单元。但这种最小的颗粒,不能再被分割,也不能复制。即使采用最先进的理想单光子探测器,在1000公里光纤中进行点对点量子通信,每300年也只能传输一个比特。“就好比一支拥有100万人的队伍,到最后可能只剩下几个人,花了很长时间才能抵达目的地。”这种受制于光纤,不能放大量子通信信号的问题,导致了在远距离上信息传递效率很低,令科学家们一筹莫展。虽然通过量子中继手段,即分成若干段传输来降低每一段的损耗,用“量子接力”的方式解决这一难题,但走向实际应用还需时日。

后来,科学家意识到,真空里不会有光的损耗,想要实现覆盖全球的广域量子保密通信,还需要借助卫星的中转。 2005年,潘建伟团队实现了13公里自由空间量子纠缠和密钥分发实验,证明光子穿透大气层后,其量子态能够有效保持,从而验证了星地量子通信的可行性。近几年开展的一系列后续实验都为发射量子卫星奠定了技术基础。 “这样一来,通过发射卫星,去除干扰因素,就可以实现几千公里的量子通信。”潘建伟说,有了量子卫星,还可以在宏观距离上检验所谓的量子力学的非局域性,也就是“幽灵般的超距作用”。“看看在实验室里不断被重复检验的理论,放在太空是否还能实现。”

命名缘由

首颗量子通信卫星以我国古代科学家墨子的名字来命名。墨子最早提出过光线沿直线传播的观点,进行了小孔成像实验。用他的名字命名以纪念他在早期物理光学方面的成就。

墨子最早通过小孔成像实验发现了光是直线传播的,第一次对光直线传播进行了科学解释——这在光学中是非常重要的一条原理,为量子通信的发展打下了一定的基础。墨子还提出了某种意义上的粒子论。光量子学实验卫星以中国科学家先贤墨子来命名,体现了中国的文化自信。

研发单位

量子卫星工程由中科院国家空间科学中心总负责;中国科学技术大学负责科学目标的提出和科学应用系统的研制;中科院上海微小卫星创新研究院抓总研制卫星系统,中科院上海技术物理研究所联合中科大研制有效载荷分系统;中科院国家空间科学中心牵头负责地面支撑系统研制、建设和运行;对地观测与数字地球科学中心等单位参加。

墨子号量子科学实验卫星

“墨子号”量子科学实验卫星运行示意图

研制历史

量子卫星2011年12月立项,是中科院空间科学先导专项首批科学实验卫星之一。工程还建设了包括南山、德令哈、兴隆、丽江4个量子通信地面站和阿里量子隐形传态实验站在内的地面科学应用系统,与量子卫星共同构成天地一体化量子科学实验系统。 量子卫星首席科学家潘建伟院士介绍,我国自主研发的量子卫星突破了一系列关键技术,包括高精度跟瞄、星地偏振态保持与基矢校正、星载量子纠缠源等。 2016年8月16日凌晨,被命名为“墨子号”的中国首颗量子科学实验卫星开启星际之旅。它承载着率先探索星地量子通信可能性的使命,并将首次在空间尺度验证量子理论的真实性。 量子通信系统的问世,点燃了建造“绝对安全”通信系统的希望。当前,量子通信的实用化和产业化已经成为各个大国争相追逐的目标。 在量子通信的国际赛跑中,中国属于后来者。经过多年的努力,中国已经跻身于国际一流的量子信息研究行列,在城域量子通信技术方面也走在了世界前列,建设完成合肥、济南等规模化量子通信城域网,“京沪干线”大尺度光纤量子通信骨干网也即将竣工。

2009年12月,空间科学先导专项参加战略性先导科技专项实施方案评议会,并在16个建议专项中名列前三名。 2011年12月23日,量子科学实验卫星工程启动暨动员会在京召开,标志着量子科学实验卫星正式进入工程研制阶段。 2014年12月30日,量子科学实验卫星通过初样转正样阶段评审,正式转入正样研制阶段。 2015年12月6日,量子科学实验卫星系统与科学应用系统完成星地光学对接试验,验证了天地一体化实验系统能够满足科学目标的指标要求。 2016年2月25日,量子科学实验卫星工程完成大系统联试。 2016年8月16日凌晨1时40分,我国在酒泉卫星发射中心用长征二号丁运载火箭成功将世界首颗量子科学实验卫星“墨子号”发射升空。

2017年1月18日,世界首颗量子科学实验卫星“墨子号”在圆满完成4个月的在轨测试任务后,正式交付中国科学技术大学使用。

2017 年6月16日,中国“墨子号”量子卫星在世界上首次实现千公里量级的量子纠缠,这意味着量子通信向实用迈出一大步。

2017 年8月12日,墨子号”取得最新成果——国际上首次成功实现千公里级的星地双向量子通信,为构建覆盖全球的量子保密通信网络奠定了坚实的科学和技术基础,至此,“墨子号”量子卫星提前、圆满地完成了预先设定的全部三大科学目标。

2017年9月29日,世界首条量子保密通信干线“京沪干线”与“墨子号”科学实验卫星进行天地链路,我国科学家成功实现了洲际量子保密通信。这标志着我国在全球已构建出首个天地一体化广域量子通信网络雏形,为未来实现覆盖全球的量子保密通信网络迈出了坚实的一步。

2018年1月,在中国和奥地利之间首次实现距离达7600公里的洲际量子密钥分发,并利用共享密钥实现加密数据传输和视频通信。该成果标志着“墨子号”已具备实现洲际量子保密通信的能力。

2020年6月15日,中国科学院宣布,“墨子号”量子科学实验卫星在国际上首次实现千公里级基于纠缠的量子密钥分发。该实验成果不仅将以往地面无中继量子密钥分发的空间距离提高了一个数量级,并且通过物理原理确保了即使在卫星被他方控制的极端情况下依然能实现安全的量子密钥分发。国际学术期刊《自然》于北京时间6月15日23时在线发表了这一成果。

目标任务

量子卫星是中国科学院空间科学先导专项首批科学实验卫星之一,其主要科学目标一是借助卫星平台,进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破;二是在空间尺度进行量子纠缠分发和量子隐形传态实验,开展空间尺度量子力学完备性检验的实验研究。

墨子号在未来两年将在世界上首次开展四项实验任务以达成两大科学目标:进行经由卫星中继的“星地高速量子密钥分发实验”,并在此基础上进行“广域量子通信网络实验”,以期在空间量子通信实用化方面取得重大突破;(第三目标)及“星地双向纠缠分发实验”与“空间尺度量子隐形传态实验”,开展空间尺度量子力学完备性检验的实验研究。除了卫星之外,地面上也建设了四个量子通信地面站(分别位于河北兴隆、新疆乌鲁木齐、青海德令哈、云南丽江)以及位于阿里的量子隐形传态实验站。除此以外,奥地利科学院和维也纳大学的科学家也与中国方面合作,在维也纳和格拉茨设置了地面站。

重要意义

“墨子号”的成功发射,将使我国在世界上首次实现卫星和地面之间的量子通信,构建天地一体化的量子保密通信与科学实验体系。 量子卫星的成功发射和在轨运行,将有助于我国在量子通信技术实用化整体水平上保持和扩大国际领先地位,实现国家信息安全和信息技术水平跨越式提升,有望推动我国科学家在量子科学前沿领域取得重大突破,对于推动我国空间科学卫星系列可持续发展具有重大意义。

美国波士顿大学的量子物理学家亚历山大·谢尔吉延科说:“这个事确实很让人激动,因为它是首次开展此类试验,因此对全球都有重要意义。量子通信的竞赛自1995年欧洲科研人员在日内瓦湖底进行量子密钥分发的最初演示时就开始了。在那以后,英国、美国、日本和中国等国家都在探索城市间的量子通信网络,而这场竞赛从地面进入了太空,因为卫星能连接相距遥远的不同都市。中国在发射量子卫星方面走在了前面。”

英国剑桥大学量子物理学教授阿德里安·肯特说:“我对中国发射量子卫星这事感到很兴奋。”他认为,这是为使用量子技术构建全球性安全通信网络迈出的“第一步”。


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

更多文章

更多精彩文章
评论 {{commentTotal}} 文明上网理性发言,请遵守《新闻评论服务协议》
游客
发表评论
  • {{item.userName}} 举报

    {{item.content}}

    {{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}

    回复评论
加载更多评论
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信

推荐阅读

· 中星九号通信卫星
概况中星9号由法国阿尔卡特宇航公司制造,SB4000平台,寿命15年,极化方式为双圆极化,定点在赤道上空东经92.2°。采用ABS-S标准传输节目。资料设计制造:法国泰雷兹·阿莱尼亚宇航公司卫星平台:Spacebus4000稳定方式:三轴稳定极化方式:圆极化轨道位置:东经92.2°发射日期:2008年6月9日转发器数量:Ku波段22个(18个36MHz带宽,4个54MHz带宽)饱和EIRP范围:Ku波段:49.2至57.5dBW上行频率波段:KU波段:17.3至17.8GHz下行频率波段:KU波段:11.7至12.2GHz
· 火星科学实验室
历史2004年,随着火星探测漫游者成功到达火星,美国国家航空航天局已经开始研究下一个火星车任务。NASA从2006年就开始挑选着陆地点,经过5年的仔细筛选,最终选定了盖尔撞击坑(4°36′S137°12′E/4.6°S137.2°E/-4.6;137.2)。这个任务还得到了国际许多国家的支持,俄罗斯联邦航天局提供一个用于寻找水的基于中子的氢探测器,西班牙教育部提供一个气象组件,德国马克斯·普朗克学会化学研究所与加拿大航天局合作提供一个分光计。本次任务的总成本达到了25亿美元,是历来最贵的火星探测任务。发射2011年11月26日发射升空2011年11月26日格林威治时间15时02分,自肯尼迪太空中心南方的卡纳维拉尔角空军基地,由“宇宙神五号”541型火箭携带发射升空。着陆好奇号在2012年8月6日05:31UTC成功登陆火星盖尔撞击坑。人物道格·麦克奎斯逊是NASA行星科学部门中火星探...
· 量子
历史量子物理是研究量子化的物理分支,在1900年根据热辐射理论延伸建立量子理论。由于马克斯·普朗克(M.Planck)试图解决黑体辐射问题,所以他大胆提出量子假设,并得出了普朗克辐射定律,沿用至今。当时德国物理界聚焦于黑体辐射问题的研究。马克斯·普朗克在1900年12月14日的德国物理学学会会议中第一次发表能量量子化数值、Avogadro-Loschmidt数的数值、一个分子摩尔(mole)的数值及基本电荷。其数值比以前的更准确,提出的理论也成功解决了黑体辐射的问题,标志着量子力学的诞生。量子假设的提出有力地冲击了经典物理学,促进物理学进入微观层面,奠基现代物理学。但直到现在,物理学家关于量子力学的一些假设仍然不能被充分地证明,仍有很多需要研究的地方。相关方程黑体辐射量子方程黑体辐射量子方程是量子力学的第一部分。在1900年10月7日面世。当物体被加热,它以电磁波的形式散发红外线辐射。物体...
· 量子引力
背景经典描述下的引力,是由爱因斯坦于1916年建立的广义相对论成功描述的。该理论透过质量对于时空曲率的影响(爱因斯坦方程)而对水星近日点岁差偏移、引力场下光线红移、光线弯折等三种问题提出了完满的解释,并且至今为止在天文学的观测上,实验数据与广义相对论预测值的相符程度远高于其他竞争理论。因此,广义相对论描述经典引力的正确性很少有人怀疑。另一方面,量子力学从狄拉克建立了相对论性量子力学的狄拉克方程开始,扩充成量子场论的各种形式。其中包括了量子电动力学与量子色动力学,成功地解释了四大基本力中的三者--电磁力、原子核的强力与弱力的量子行为,仅剩下引力的量子性尚未能用量子力学来描述。除了未能达成对于引力量子(引力子)的描述之外,两个成功的理论在根本架构上也有冲突之处:量子场论是建构在广义相对论的平坦时空下基本力的粒子场上。如果要透过这种相同模式来对引力场进行量子化,则主要问题是在广义相对论的弯曲时空...
· 量子测量
量子测量的数学形式与经典物理中的测量不同,量子测量不是独立于所观测的物理系统而单独存在的,相反,测量本身即是物理系统的一部分,所作的测量会对系统的状态产生干扰。一般形式:量子公设III量子公设的第三条是对测量下的定义。量子测量可以通过一个测量算符的集合{Mm}{\displaystyle\{M_{m}\}}来表示,它作用在系统的状态空间上。测量算符M{\displaystyleM}的序列号m{\displaystylem}表示测量所得出的不同结果。如果系统在测量前处于状态|ψψ-->⟩⟩-->{\displaystyle|\psi\rangle},那么测量后得到结果m的概率是:测量后系统的状态变为:测量算符必须满足以下的完备性条件:上述完备性条件与下式等价,即完备性条件决定了测量得到各个结果的概率和为1:射影测量射影测量(projectivemeasurement)是一般形式量子测量的一个...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信