族谱网 头条 人物百科

西尔维斯特矩阵

2017-10-16
出处:族谱网
作者:阿族小谱
浏览:873
转发:0
评论:0
定义设p和q为两个多项式,次数分别为m和n。因此:于是,与p和q相关的西尔维斯特矩阵,就是通过以下方法得到的矩阵(n+m)××-->(n+m){displaystyle

定义

设p和q为两个多项式,次数分别为m和n。因此:

于是,与p和q相关的西尔维斯特矩阵,就是通过以下方法得到的矩阵 ( n + m ) × × --> ( n + m ) {\displaystyle (n+m)\times (n+m)} :

第一行为:

第二行是第一行往右移一列;第二行第一列的元素是零。

下面的(n-2)行也是用这种方法得出,每次都往右移一列。

第(n+1)行为:

余下的行仍然是每次都往右移一列。

因此,如果我们设m=4和n=3,则矩阵为:

应用

西尔维斯特矩阵用于交换代数中,例如测试两个多项式是否有一个(非常数)公因式。确实,在这种情况下,相关的西尔维斯特矩阵的行列式(称为两个多项式的结式)等于零。反过来也成立。

以下线性方程组的解

其中 x {\displaystyle x} 是大小为 n {\displaystyle n} 的向量, y {\displaystyle y} 是大小为 m {\displaystyle m} 的向量,由满足下式的多项式对 x , y {\displaystyle x,y} (次数分别为 n − − --> 1 {\displaystyle n-1} 和 m − − --> 1 {\displaystyle m-1} )的系数向量构成:

这就是说,西尔维斯特矩阵的转置的核给出了裴蜀方程的所有解,其中 deg ⁡ ⁡ --> x q {\displaystyle \deg x 且 deg ⁡ ⁡ --> y p {\displaystyle \deg y 。

这样,西尔维斯特矩阵的秩决定了 p {\displaystyle p} 和 q {\displaystyle q} 的最大公因式的次数:

参考文献

MathWorld上Sylvester Matrix的资料,作者:埃里克·韦斯坦因。


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

更多文章

更多精彩文章
评论 {{commentTotal}} 文明上网理性发言,请遵守《新闻评论服务协议》
游客
发表评论
  • {{item.userName}} 举报

    {{item.content}}

    {{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}

    回复评论
加载更多评论
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信

推荐阅读

· 埃尔米特矩阵
性质若A和B是埃尔米特矩阵,那么它们的和A+B也是埃尔米特矩阵;而只有在A和B满足交换性(即AB=BA)时,它们的积才是埃尔米特矩阵。可逆的埃尔米特矩阵A的逆矩阵A仍然是埃尔米特矩阵。如果A是埃尔米特矩阵,对于正整数n,A是埃尔米特矩阵。方阵C与其共轭转置的和C+(C∗∗-->){\displaystyleC+(C^{*})}是埃尔米特矩阵,方阵C与其共轭转置的差C−−-->C∗∗-->{\displaystyleC-C^{*}}是斜埃尔米特矩阵。任意方阵C都可以用一个埃尔米特矩阵A与一个斜埃尔米特矩阵B的和表示:埃尔米特矩阵是正规矩阵,因此埃尔米特矩阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着埃尔米特矩阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组C的正交基。n-阶埃尔米特矩阵的元素构成维数为n的实向量空间,因为主对角线上的元素
· 斜埃尔米特矩阵
例子例如,以下的矩阵是斜埃尔米特矩阵:性质斜埃尔米特矩阵的特征值全是纯虚数。更进一步,斜埃尔米特矩阵都是正规矩阵。因此它们是可对角化的,它们不同的特征向量一定是正交的。斜埃尔米特矩阵的主对角线上的所有元素都一定是纯虚数。如果A是斜埃尔米特矩阵,那么iA是埃尔米特矩阵。如果A,B是斜埃尔米特矩阵,那么对于所有的实数a,b,aA+bB也一定是斜埃尔米特矩阵。如果A是斜埃尔米特矩阵,那么对于所有的正整数k,A都是埃尔米特矩阵。如果A是斜埃尔米特矩阵,那么A的奇数次方也是斜埃尔米特矩阵。如果A是斜埃尔米特矩阵,那么e是酉矩阵。一个矩阵和它的共轭转置的差(C−−-->C∗∗-->{\displaystyleC-C^{*}})是斜埃尔米特矩阵。任意一个方块矩阵C都可以写成一个埃尔米特矩阵A和一个斜埃尔米特矩阵B的和:参见斜对称矩阵埃尔米特矩阵正规矩阵酉矩阵
· 矩阵
发展作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,已经出现过以矩阵形式表示线性方程组系数以解方程的图例,可算作是矩阵的雏形。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。阿瑟·凯莱被认为是矩阵论的奠基人进入十九世纪后,行列式的研究进一步发展,矩阵的概念也应运而生。奥古斯丁·路易·柯西是最早将行列式排成方阵并将其元素用双重下标表示的数学家。他还在1829年就在行列式的框架中证明了实对称矩阵特征根为实数的结论。其后,詹姆斯·约瑟夫·西尔维斯特注意到,在作为行列式的计算形式以外,将数...
· 变换矩阵
应用任意线性变换都可以用矩阵表示为易于计算的一致形式,并且多个变换也可以很容易地通过矩阵的相乘连接在一起。线性变换不是唯一可以用矩阵表示的变换。R维的仿射变换与透视投影都可以用齐次坐标表示为RP维(即n+1维的真实投影空间)的线性变换。因此,在三维计算机图形学中大量使用着4x4的矩阵变换。寻找变换矩阵如果已经有一个函数型的线性变换T(x){\displaystyleT(x)},那么通过T对标准基每个向量进行简单变换,然后将结果插入矩阵的列中,这样很容易就可以确定变换矩阵A,即例如,函数T(x)=5x{\displaystyleT(x)=5x}是线性变换,通过上面的过程得到(假设n=2)在二维图形中的应用示例最为常用的几何变换都是线性变换,这包括旋转、缩放、切变、反射以及正投影。在二维空间中,线性变换可以用2×2的变换矩阵表示。旋转绕原点逆时针旋转θ度角的变换公式是x′=xcos⁡⁡-->θ...
· 对角矩阵
例子(a000b000c),(100020000),(1007),(2){\displaystyle{\begin{pmatrix}a&0&0\\0&b&0\\0&0&c\end{pmatrix}},{\begin{pmatrix}1&0&0\\0&2&0\\0&0&0\end{pmatrix}},{\begin{pmatrix}1&0\\0&7\end{pmatrix}},{\begin{pmatrix}2\end{pmatrix}}}均为对角矩阵矩阵运算[a1a2⋱⋱-->an]+[b1b2⋱⋱-->bn]=[a1+b1a2+b2⋱⋱-->an+bn]{\displaystyle{\begin{bmatrix}a_{1}&&&\\&a...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信