图像分割
图像分割的应用
图像分割在实际中的应用包括:
医学影像,包括:
在卫星图像中定位物体(道路、森林等)
人脸识别
指纹识别
交通控制系统
Brake light detection
机器视觉
现已有许多各种用途的图像分割算法。对于图像分割问题没有统一的解决方法,这一技术通常要与相关领域的知识结合起来,这样才能更有效的解决该领域中的图像分割问题。
聚类法

源图像。执行k-均值聚类(k=16)后的图像。注意:为了提高速度,通常可以先对较大图片进行下采样后再计算聚类。
K-均值聚类法是一种将图像分割成K个聚类的迭代技术。基本算法如下:
首先从n个数据对象任意选择 k 个对象作为初始聚类中心;
对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;
然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);
重复第2和3步骤,直至收敛(聚类不再发生变化)。
这里,距离指像素与聚类中心之间绝对偏差或偏差的平方。偏差通常用像素颜色、亮度、纹理、位置,或它们的加权组合。K值可以手动选取、随机选取、或其它方式得到。此算法保证收敛,但它可能不会返回最佳的解决方案。该解决方案的质量取决于最初的一组集群和K值。
直方图法
相对于其他的图像分割算法来说,基于直方图的方法是一种效率非常高的方法,因为通常来说,该方法只需要对整幅图片扫描一遍即可。该方法对于整幅图像建立一张直方图,并通过图中的峰和谷来进行分类。颜色与灰度是通常进行直方图统计的特征。
边缘检测
边缘检测主要是图像的灰度变化的度量、监测和定位,其实质就是提取图像中不连续部分的特征。边缘检测在图像处理中比较重要,边缘检测的结果是图像分割技术所依赖的重要特征,因此边缘检测是图像分割领域的一部分。边缘检测常用于计算机视觉、武器的跟踪控制及自控制式的车船运动研究等领域。
首先介绍图像边缘检测,具体就梯度算子、kirsch算子、laplacian-gauss算子、canny算子、log滤波算子、sobel算子、Robert算子、prewitt算子边缘检测方法介绍检测原理并通过编程实现,比较各种方法的处理结果。
区域生长
区域生长的基本思想是将具有相似性质的像素集合起来构成区域。具体先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素具有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子像素所在的区域中。将这些新像素当做新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来,这样,一个区域就长成了。
水平集方法
水平集方法最初由Osher和Sethian提出,目的是用于界面追踪。在90年代末期被广泛应用在各种图像领域。这一方法能够在隐式有效的应对曲线/曲面演化问题。基本思想是用一个符号函数表示演化中的轮廓(曲线或曲面),其中符号函数的零水平面对应于实际的轮廓。这样对应于轮廓运动方程,可以容易的导出隐式曲线/曲面的相似曲线流,当应用在零水平面上将会反映轮廓自身的演化。水平集方法具有许多优点:它是隐式的,参数自由的,提供了一种估计演化中的几何性质的直接方法,能够改变拓扑结构并且是本质的。
请参阅
计算机视觉
数据聚类
图论
直方图
基于图像的网格
K-均值算法
Pulse-coupled networks
Range image segmentation
区域生长
大津算法
参考文献
3D Entropy Based Image Segmentation
Frucci, Maria; Sanniti di Baja, Gabriella.From Segmentation to Binarization of Gray-level Images.Journal of Pattern Recognition Research. 2008, 3 (1): 1–13.
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

- 有价值
- 一般般
- 没价值








24小时热门
推荐阅读


关于我们

APP下载


{{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}